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Figure 1. Our PanoHead enables 360◦ view-consistent photo-realistic full-head image synthesis with high-fidelity geometry, enabling
authentic 3D portraits creation from a single-view image.

Abstract

Synthesis and reconstruction of 3D human head has
gained increasing interests in computer vision and computer
graphics recently. Existing state-of-the-art 3D generative ad-
versarial networks (GANs) for 3D human head synthesis are
either limited to near-frontal views or hard to preserve 3D
consistency in large view angles. We propose PanoHead, the
first 3D-aware generative model that enables high-quality
view-consistent image synthesis of full heads in 360◦ with
diverse appearance and detailed geometry using only in-the-
wild unstructured images for training. At its core, we lift up
the representation power of recent 3D GANs and bridge the
data alignment gap when training from in-the-wild images
with widely distributed views. Specifically, we propose a
novel two-stage self-adaptive image alignment for robust 3D
GAN training. We further introduce a tri-grid neural volume
representation that effectively addresses front-face and back-
head feature entanglement rooted in the widely-adopted tri-
plane formulation. Our method instills prior knowledge
of 2D image segmentation in adversarial learning of 3D
neural scene structures, enabling compositable head synthe-

sis in diverse backgrounds. Benefiting from these designs,
our method significantly outperforms previous 3D GANs,
generating high-quality 3D heads with accurate geometry
and diverse appearances, even with long wavy and afro
hairstyles, renderable from arbitrary poses. Furthermore,
we show that our system can reconstruct full 3D heads from
single input images for personalized realistic 3D avatars.

1. Introduction
Photo-realistic portrait image synthesis has been a con-

tinuous focus in computer vision and graphics, with a wide
range of downstream applications in digital avatars, telep-
resence, immersive gaming, and many others. Recent ad-
vances in Generative Adversarial Networks (GANs) [12] has
demonstrated strikingly high image synthesis quality, indis-
tinguishable from real photographs [19, 21, 22]. However,
contemporary generative approaches operate on 2D convolu-
tional networks without modeling the underlying 3D scenes.
Therefore 3D consistency cannot be strictly enforced when
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synthesizing head images under various poses.
To generate 3D heads with diverse shapes and appear-

ances, traditional approaches require a parametric textured
mesh model [2, 25] learned from large 3D scan collections.
However, the rendered images lack fine details and have
limited perceptual quality and expressiveness. With the
advent of differentiable rendering and neural implicit rep-
resentation [28, 47], conditional generative models have
been developed to generate more realistic 3D-aware face
images [17, 44, 45, 53]. However, those approaches typically
require multi-view image or 3D scan supervision, which are
hard to acquire and have limited appearance distribution as
those are usually captured in controlled environments.

3D-aware generative models have recently seen rapid
progress, fueled by the integration of implicit neural repre-
sentation in 3D scene modeling and Generative Adversarial
Networks (GANs) for image synthesis [5,6,29,31,37,40,48].
Among them, the seminal 3D GAN, EG3D [5], demonstrates
striking quality in view-consistent image synthesis, trained
only from in-the-wild single-view image collections. How-
ever, these 3D GAN approaches are still limited to synthesis
in near-frontal views.

In this paper, we propose PanoHead, a novel 3D-aware
GAN for high-quality full 3D head synthesis in 360◦ trained
from only in-the-wild unstructured images. Our model can
synthesize consistent 3D heads viewable from all angles,
which is desirable by many immersive interaction scenarios
such as digital avatars and telepresence. To the best of our
knowledge, our method is the first 3D GAN approach to
achieve full 3D head synthesis in 360◦.

Extending 3D GAN frameworks such as EG3D [5] to
full 3D head synthesis poses several significant technical
challenges: Firstly, many 3D GANs [5, 31] cannot separate
foreground and background, inducing 2.5D head geometry.
The background, formulated typically as a wall structure, is
entangled with the generated head in 3D and therefore pro-
hibits rendering from large poses. We introduce a foreground-
aware tri-discriminator that jointly learns the decomposition
of the foreground head in 3D space by distilling the prior
knowledge in 2D image segmentation.

Secondly, while being compact and efficient, current hy-
brid 3D scene representations, like tri-plane [5], introduce
strong projection ambiguity for 360◦ camera poses, resulting
in ‘mirrored face’ on the back head. To address the issue,
we present a novel 3D tri-grid volume representation that
disentangles the frontal features with the back head while
maintaining the efficiency of tri-plane representations.

Lastly, obtaining well-estimated camera extrinsics of in-
the-wild back head images for 3D GANs training is ex-
tremely difficult. Moreover, an image alignment gap exists
between these and frontal images with detectable facial land-
marks. The alignment gap causes a noisy appearance and
unappealing head geometry. Thus, we propose a novel two-

stage alignment scheme that robustly aligns images from
any view consistently. This step decreases the learning diffi-
culty of 3D GANs significantly. In particular, we propose a
camera self-adaptation module that dynamically adjusts the
positions of rendering cameras to accommodate the align-
ment drifts in the back head images.

Our framework substantially enhances the 3D GANs’ ca-
pabilities to adapt to in-the-wild full head images from arbi-
trary views, as shown in Figure 1. The resulting 3D GAN not
only generates high-fidelity 360◦ RGB images and geometry,
but also achieves better quantitative metrics than state-of-
the-art methods. With our model, we showcase compelling
3D full head reconstruction from a single monocular-view
image, enabling easily accessible 3D portrait creation.

In summary, our main contributions are as follows:

• The first 3D GAN framework that enables view-consistent
and high-fidelity full-head image synthesis with detailed
geometry, renderable in 360◦. We demonstrate our ap-
proach in high-quality monocular 3D head reconstruction
from in-the-wild images.

• A novel tri-grid formulation that balances efficiency and
expressiveness in representing 3D 360◦ head scenes.

• A foreground-aware tri-discriminator that disentangles 3D
foreground head modeling from 2D background synthesis.

• A novel two-stage image alignment scheme that adaptively
accommodates imperfect camera poses and misaligned
image cropping, enabling training of 3D GANs from in-
the-wild images with wide camera pose distribution.

2. Related Work
3D Head Representation and Rendering. To represent
3D heads with diverse shapes and appearances, a line of
work has targeted parametric textured mesh representation,
such as 3D Morphable Model (3DMM) [2–4, 33] for faces
and FLAME head model [25], learned from 3D scans. How-
ever, these parametric representations do not model photo-
realistic appearance and geometry beyond the front face
or skull. The neural implicit functions [47] have recently
emerged as powerful continuous and differential represen-
tations of 3D scenes. Among them, Neural Radiance Field
(NeRF) [1, 28] has been widely adopted in digital head mod-
eling [10,15,17,32,34,43] due to its superiority in modeling
complex scene details and synthesizing multiview images
with inherited 3D consistency. In contrast to optimizing
a person-specific neural radiance field from multiview im-
ages or temporal videos, our approach builds a generative
NeRF from unstructured 2D monocular images. Recently
implicit-explicit hybrid 3D representation has been explored
for better efficiency [5, 9, 27]. Among them, the tri-plane
formulation proposed in EG3D [5] demonstrates a highly
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Figure 2. Our framework consists of three main components: a foreground-aware generator G, discriminator D, and a neural renderer R. A
mapping network first maps latent code z and conditioned camera pose ccon into the intermediate latent code w. The generator G then
takes w to obtain the 3D tri-grid representation features f . With f and rendering camera pose ccam, the neural renderer R synthesizes
super-resolved image I+, bilinear-upsampled image I , and super-resolved mask Im+. Finally, the foreground-aware tri-discriminator D
critiques (I+, I , Im+) along with real images. The data processing pipeline is shown in the right side. The real images are cropped with
modified YOLO bounding boxes yet they often differ at scale and location due to lacking accurate facial landmarks. With the camera
self-adaptation scheme, the rendering camera pose ccam is able to correct itself to generate images with consistent scale and location.

efficient 3D scene representation with high-quality view-
consistent image synthesis. The tri-plane representation can
scale efficiently with resolution, enabling greater detail for
equal capacity. Our tri-grid representation transforms the tri-
plane representation into a more expressive space for better
feature embedding in unconditional 3D head synthesis.

Single- or Few-view Supervised 3D GANs. Given the
impressive progress of GANs on 2D image generation [12,
19, 21, 22], many studies have attempted to extend them to
3D-aware generation. These GANs aim to learn a general-
izable 3D representation from 2D image a collections. For
face synthesis, Szabo et al. [42] first proposed using vertex
position maps as the 3D representation to generate textured
mesh outputs. Shi et al. [39] proposed a self-supervised
framework to convert 2D StyleGANs [21] into 3D gener-
ative models, although its generalizability is bounded by
its base 2D StyleGAN. GRAF [37] and pi-GAN [6] are
the first to integrate NeRF into 3D GANs. However, their
performance is limited by the intense computation cost of
forwarding and backwarding a complete NeRF. Many recent
studies [5,8,11,13,29–31,38,40,48,49] have attempted to im-
prove the efficiency and quality of such NeRF-based GANs.
Specifically, EG3D [5], which we build our work upon, intro-
duces tri-plane representation that can leverage a 2D GAN
backbone for generating efficient 3D representation and is
shown outperforming other 3D representations [38]. Parallel
to these works, another thread of studies [30,41,46,50] have
been working on controllable 3D GANs that can manipulate
the generated 3D faces or bodies.

3. Methodology

3.1. PanoHead Overview

To synthesize realistic and view-consistent full head im-
ages, we build PanoHead upon a state-of-the-art 3D-aware
GAN, i.e. EG3D [5], due to its efficiency and synthesis
quality. Specifically, EG3D leverages StyleGAN2 [22] back-
bone to output a tri-plane representation that represents a 3D
scene with three 2D feature planes. Given a desired camera
pose ccam, the tri-plane is decoded with a MLP network
and volume rendered into a feature image, followed by a
super-resolution module to synthesize a higher resolution
RGB image I+. Both the low and high resolution images
are then jointly optimized by a dual discriminator D.

In spite of EG3D’s success in generating frontal faces,
we found it to be a much more challenging task to adapt
to 360◦ in-the-wild full head images for the following rea-
sons: 1) foreground-background entanglement prohibit large
pose rendering, 2) strong inductive bias from tri-plane rep-
resentation causes mirroring face artifacts on the back head,
and 3) noisy camera labels and inconsistent cropping of
back head images. To address these problems, we introduce
a background generator and a tri-discriminator for decou-
pling foreground and background (Section 3.2), an efficient
yet more expressive tri-grid representation while still being
compatible with StyleGAN backbone (Section 3.3), and a
two-stage image alignment scheme with an self-adaptation
module that dynamically adjusts rendering cameras during
training (Section 3.4). The overall pipeline for our model is
illustrated in Figure 2.



3.2. Foreground-Aware Tri-Discrimination

A typical challenge of state-of-the-art 3D-aware GANs,
like EG3D [5], is the entangled foreground with the back-
ground of synthesized images. Regardless of the highly de-
tailed geometry reconstruction, directly training the 3D GAN
from in-the-wild RGB image collections, such as FFHQ [21],
results in a 2.5D face, as illustrated in Figure 3 (a). Augment-
ing with image supervisions from the side and back of the
head helps build up the full-head geometry with reasonable
back head shapes. However, it does not solve the problem
because the tri-plane representation itself is not designed to
represent separated foreground and background.

To disentangle the foreground from the background, we
first introduce an additional StyleGAN2 network [22] to gen-
erate 2D backgrounds at the same resolution of raw feature
image Ir. During volume rendering, the foreground mask
Im can be obtained by:

Ir(r) =

∫ ∞

0

w(t)f(r(t))dt, Im(r) =

∫ ∞

0

w(t)dt, (1)

w(t) = exp
(
−
∫ t

0

σ(r(s))ds
)
σ(r(t)), (2)

where r(t) represents a ray emitted from the rendering cam-
era center. The foreground mask is then used to compose a
new low-resolution image Igen:

Igen = (1− Im)Ibg + Ir, (3)

which is fed into the super-resolution module. Note that the
computation cost of background generator is insignificant
since its output has a much lower resolution than the tri-plane
generator and super-resolution module.

Simply adding a background generator does not fully
decouple it from the foreground since the generator tends
to synthesize foreground content in the background. Thus,
we propose a novel foreground-aware tri-discriminator to
supervise the rendered foreground mask along with the RGB
images. Specifically, the input of the tri-discriminator has 7
channels, composed with a bilinearly-upsampled RGB im-
age I , a super-resolved RGB image I+ and single-channel
upsampled foreground mask Im+. The additional mask
channel allows the 2D segmentation prior knowledge to be
back-propagated into the density distribution of the neural
radiance field. Our approach reduces the learning difficulty
in shaping the 3D full head geometry from unstructured 2D
images, enabling authentic geometry ((Figure 3 (b))) and
appearance synthesis of a full head composable with vari-
ous backgrounds (Figure 3 (c)). We note that in constrast
from ENARF-GAN [30] that employs a single discriminator
for RGB images composed of synthesized foreground and
background images using a dual-generated mask, our tri-
discriminator better ensures view-consistent high-resolution
outputs.

(a)

(b)

(c)

Figure 3. Geometry and RGB images from dual-discrimination
(a) and foreground-aware tri-discrimination (b, c). EG3D (a) fails
to decouple the background. PanoHead’s tri-discrimination offers
both background-free geometry (b) and background-switchable full
head image synthesis (c).

3.3. Feature Disentanglement in Tri-Grid

The tri-plane representation, proposed in EG3D [5], of-
fers an efficient representation for 3D generation. The neural
radiance density and appearance of a volume point are ob-
tained by projecting its 3D coordinate over three axis-aligned
orthogonal planes and decoding the sum of three bilinearly
interpolated features with a tiny MLP. However, when syn-
thesizing a full head in 360◦, we observe tri-plane is limited
in expressiveness and suffers from mirroring-face artifacts.
The problem is even pronounced when the camera distribu-
tion of the training images is unbalanced. The root cause
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Figure 4. Comparison between tri-plane (a) and tri-grid (b) archi-
tecture in Z axis. With tri-plane, two different points’ projections
share the feature from the plane PXY , which introduces representa-
tion ambiguity. With tri-grid, the features for the above two points
are trilinearly interpolated from two different planes, thus generat-
ing distinct features. Please refer to supplement for implementation
and visualization details.



(a)

(b)

Figure 5. Images synthesis with tri-plane and tri-grid (D = 3).
Due to the projection ambiguity, tri-plane representation (a) can
generate good-quality front face image yet with a ‘mirrored face’
on back head, while our tri-grid representation synthesizes high-
quality back head appearance and geometry (b).

is the inductive bias originating from tri-plane projection,
where one point on a 2D plane has to represent features
of different 3D points. For example, a point on the front
face and a point on the back hair will be projected to the
same point on the XY plane PXY (orthogonal to Z axis),
as illustrated in Figure 4 (a). Although the other two planes
should theoretically provide complementary information to
alleviate this projection ambiguity, we found it not the case
when there is less visual supervision from the back or when
the structure of the back head is challenging to learn. The
tri-planes are prone to borrow features from the front face
to synthesize the back head, referred to as mirroring-face
artifacts here (Figure 5(a)).

To reduce the inductive bias of the tri-plane, we lift its
formulation into a higher dimension by augmenting tri-plane
with an additional depth dimension. We call this enriched
version as a tri-grid. Instead of having three planes with
a shape of H × W × C with H and W being the spatial
resolution and C being the number of channel, each of our
tri-grid has a shape of D × H × W × C, where D repre-
sents the depth. For instance, to represent spatial features
on the XY plane, tri-grid will have D axis-aligned feature
planes PXY

i , i = 1, . . . , D uniformly distributed along the
Z axis. We query any 3D spatial point by projecting its
coordinate onto each of the tri-grid, retrieving the corre-
sponding feature vector by tri-linear interpolation. As such,
for two points sharing the same projected coordinates but
with different depths, the corresponding feature would be
likely to be interpolated from non-shared planes (Figure 4
(b)). Our formulation disentangles the feature presentation of
the front face and back head and therefore largely alleviates
the mirroring-face artifacts (Figure 5).

Similar to tri-plane in EG3D [5], we can synthesize the tri-
grid as 3×D feature planes using the StyleGAN2 generator

(b)

(a)

Figure 6. Image synthesized without (a) and with the camera self-
adaptation scheme(b). Without it, the model generates misaligned
back head images, leading to a defective dent in back head.

[21]. That is, we increase the number of output channels of
the original EG3D backbone by D times. Thus, tri-plane can
be regarded as a naïve case of our tri-grid representation with
D = 1. The depth D of our tri-grid is tunable and larger D
offers more representation power at the cost of additional
computation overhead. Empirically we find a small value of
D (e.g. D = 3) is sufficient in feature disentanglement while
still maintaining its efficiency as a 3D scene representation.

3.4. Self-Adaptive Camera Alignment

For adversarial training of our full head in 360◦, we
need in-the-wild image exemplars from a much wider range
of camera distribution than the mostly frontal distribution,
as in FFHQ [21]. Although our 3D-aware GAN is only
trained from widely-accessible 2D images, the key to the
best quality training is accurate alignment of visual obser-
vations across images labeled with well-estimated camera
parameters. While a good practice has been established for
frontal face images cropping and alignment based on facial
landmarks, it has never been studied in pre-processing large-
pose images for GAN training. Both camera estimation and
image cropping are no longer straightforward due to the lack
of robust facial landmarks detection for images taken from
the side and back.

To resolve the aforementioned challenge, we propose a
novel two-stage processing. In the first stage, for images
with detectable facial landmarks, we still adopt the stan-
dard processing where the faces are scaled to a similar size
and aligned at the center of the head using state-of-the-art
face pose estimator 3DDFA [14]. For the rest of the images
with large camera poses, we employ a head pose estima-
tor WHENet [52] that provides a roughly-estimated camera
pose, and a human detector YOLO [18] with a bounding
box centered at the detected head. To crop the images at
a consistent head scale and center, we apply both YOLO
and 3DDFA on a batch of front-face images, from which
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(a) Baselines: GRAF, GIRAFFEHD, StyleSDF, EG3D, a full-head NeRF (b) PanoHead with different seeds

Figure 7. Qualitative comparison between GRAF [37], GIRAFFEHD [48], StyleSDF [31], EG3D [5], multi-view supervised NeRF [43]
(different methods from top to bottom on left side), and our PanoHead (right). Except [43], all models are trained on FFHQ-F. We render the
results at a yaw angle of 0, 45, 90, 135, and 180◦. GRAF, GIRAFFEHD, and StyleSDF fail to model the correct camera distribution in latent
space due to the unsupervised camera pose mechanism, thus not turning to the back. EG3D is able to rotate to the back with ‘mirroring face’
artifacts and entangled background. Multi-view supervised NeRF is comparable to ours, however, it requires multi-view data of a single
person and is not a generative model.

we adjust the scale and translation of the head center of
YOLO with constant offsets. This approach enables us to
pre-process all head images with labeled camera parameters
and in a consistent alignment to a large extent.

Due to the presence of various hairstyles, there is still
inconsistency in the alignment of back head images, in-
ducing significant learning difficulties for our network to
interpret the complete head geometry and appearance (see
Figure 6 (a)). We, therefore, propose a self-adaptive camera
alignment scheme to fine-tune the transformation of volume
rendering frustum for each training image. Specifically, our
3D-aware GAN associates each image with a latent code
z that embeds the 3D scene information of geometry and
appearance, which can be synthesized at a view of ccam.
ccam might not align well with the image content for our
training images; so, it is hard for the 3D GAN to figure out a
reasonable full head geometry. Therefore we co-learn a resid-
ual camera transformation ∆ccam mapped from (z, ccam)
together with our adversarial training. The magnitude of
∆ccam is regularized with a L2 norm. Essentially, the net-
work dynamically self-adapts the image alignment with re-
fined correspondence across different visual observations.
We note that this is only possible credited to the nature of
3D-aware GAN that can synthesize view-consistent images

at various cameras. Our two-stage alignment enables 360-
degree view-consistent head synthesis with authentic shape
and appearance, learnable from diverse head images with
widely distributed camera poses, styles, and structures.

4. Experiments
4.1. Datasets and Baselines

We train and evaluate our framework on a balanced com-
bination of FFHQ [21], K-hairstyle dataset [24], and an
in-house large-pose head image collection. FFHQ contains
70K diverse high-resolution face images, yet mainly fall in
the absolute yaw range from 0◦ to 60◦, assuming up-front
camera pose corresponds to 0◦. We augment the FFHQ
dataset with 4K back-head images from K-hairstyle dataset
and 15K in-house large-pose images with diverse styles,
ranging from 60◦ to 180◦. For brevity, we name this dataset
combination as FFHQ-F. We refer to the supplementary pa-
per for more dataset analysis and network training details.

We compare against state-of-the-art 3D-aware GANs in-
cluding GRAF [37], EG3D [5], StyleSDF [31], and GIRAF-
FEHD [48]. All baselines are retrained from the same FFHQ-
F dataset. We measure the quality of generated multiview
images and geometry both quantitatively and qualitatively.



GRAF GIRAFFEHD StyleSDF EG3D Ours

FID-all ↓ 68.2 37.3 78.5 6.2 5.4
MSE (10−2) ↓ N/A 42.6 N/A N/A 9.1
ID ↑ N/A 0.39 0.41 0.74 0.74

Table 1. Metrics comparison across all baselines. For segmentation
MSE, only GIRAFFEHD and PanoHead decouple the background
and foreground. For ID score, GRAF’s low-quality images lead to
facial detection failure.

EG3D +seg. +seg.&self-adapt.

tri-plane tri-grid tri-grid

FID-back ↓ 50.4 44.1 44.0 40.9
FID-front ↓ 6.6 5.0 5.5 5.4
FID-all ↓ 6.2 5.2 5.2 5.4

IS-back ↑ 4.3 3.9 4.2 4.4
IS-front ↑ 3.9 4.1 4.1 4.1
IS-all ↑ 3.8 4.0 4.0 4.1

Runtime ↓ 1 1.14× 1.26× 1.28×

Table 2. Ablation studies on different components. +seg. means
with foreground-aware tri-discrimination. +self-adpat. means with
camera self-adaptation scheme. All are trained with FFHQ-F

4.2. Qualitative Comparisons

360◦ Image Synthesis. Figure 7 visually compares the im-
age quality against the baselines, all trained with FFHQ-F,
by synthesizing images from five different views, ranging
the yaw angle from 0 to 180◦. GRAF [37] fails to synthe-
size compelling head images and its background is entangled
with foreground head. StyleSDF [31] and GIRAFFEHD [48]
are able to synthesize realistic frontal face images but in low
perceptual quality when rendered from a larger camera pose.
Without explicit reliance on camera labels, we suspect the
above methods have difficulty in interpreting the 3D scene
structures by themselves directly from images with 360◦

camera distribution. We observe that EG3D [5] is able to
synthesize high-quality view-consistent frontal head images
before rotating the view to the side or even the back. Mir-
roring face artifacts are clearly observable from the back,
due to the tri-plane’s projection ambiguity and the entan-
gled fore-background. The method proposed in [43] builds
personalized full-head NeRF at the extra cost of multi-view
supervision. Regardless of its good quality images at all
views, the model itself is not a generative model. In strong
contrast, our model generates superior photo-realistic head
images for all camera poses while retaining multi-view con-
sistency. It delivers photo-realism with fine details at diverse
appearances, ranging from shaved head with glasses to long
curly hairstyles. To better appreciate our multi-view full-
head synthesis, please refer to our supplementary video for
more comprehensive visual results.

Geometry Generation. Figure 8 compares the visual quality
of the underlying 3D geometry extracted by running March-
ing Cubes algorithms [26]. While StyleSDF [31] generates
decent appearances of the front face, the complete geometry
of the head is noisy and broken. EG3D presents detailed
geometry of front face and hair, but either with background
concrete entangled (Figure 3(a)) or with a hollowed back
head (Figure 8). In contrast, our model can consistently
generate high-fidelity background-free 3D head geometry
even with various hairstyles.

4.3. Quantitative Results

To quantify the visual quality, fidelity, and diversity of
the generated images, we employ Frechet Inception Dis-
tance (FID) [16] of 50K real and fake image samples. We
measure the multi-view consistency using the identity sim-
ilarity score (ID) by calculating the average Adaface [23]
cosine similarity score from paired synthesized face images
rendered from different camera poses. Note that this metric
can only be applied to those images with detected facial
landmarks. We assess mean square error (MSE) to calculate
the accuracy of the generated segmentation against the mask
obtained with DeepLabV3 ResNet101 network [7]. Table 1
compares these metrics across all baselines and our method.
We observe that our model outperforms other baselines con-
sistently from all perspectives. Refer to supplemental mate-
rial for metrics definition and implementation details.

To evaluate the image quality at different views, we
employ FID and Inception Score (IS) [36] for synthe-
sized images with only back poses (|yaw| ≥ 90◦), front
poses (|yaw| < 90◦), and all camera poses. FID measures
on the similarity and diversity of real and fake image distribu-
tions while IS focuses more on the image quality itself. Our
GAN model follows EG3D for the main backbone, where
the tri-plane generator is conditioned on a camera pose. We
observe that such a design leads to biased image synthesis
quality toward the conditioning camera pose. Specifically,
when conditioning on the front view, our generator achieves
inferior quality for synthesizing the head images from the
back, and vice versa. However, when calculating FID-all,
the conditioning camera is always the same as the rendering
view. Therefore the generator could still achieve an excellent
FID-all score even though the quality of generated heads
might degenerate in unseen views. Hence, the original FID
metrics (FID-all and FID-front) can hardly thoroughly reflect
the overall generation quality of full heads in 360◦. To alle-
viate this issue, we propose FID-back, where we condition
on the front view but synthesize the images from the back.
It leads to higher FID scores but reflects the quality in 360◦

image synthesis better.
We perform an ablation study on our method to quanti-

tatively evaluate the efficacy of each individual component
(Table 2). As shown in the second column, we notice a sig-



Figure 8. PanoHead achieves high-quality complete head geometry
whereas StyleSDF [31] and EG3D [5] produce 3D noises or hal-
lowed heads.

nificant quality boost after adding the foreground-aware dis-
crimination for all cases, compared with the original EG3D.
That indicates the prior segmentation knowledge largely ease
the network learning difficulty of 3D heads from in-the-wild
image collections. Frontal face synthesis quality is compa-
rable among all methods given the strong supervision from
the large amount of well-aligned frontal images. However,
for the back head, decoupling foreground and background
largely improves the synthesis quality. In addition, changing
tri-plane to tri-grid representation further enhances the image
quality. With tri-discrimination, tri-grid, and camera self-
adaption scheme altogether, PanoHead achieves the lowest
FID-back and the highest IS for back head generation. As
reflected in the row of run-time analysis, our novel compo-
nent only introduces minor computation overhead, but with
significant image synthesis quality improvements. Note that
the frontal image quality is superior to the back head, largely
due to the significant learning difficulty in various hairstyles
and unstructured back-head appearances.

4.4. Single-view GAN Inversion

Figure 9 demonstrates full-head reconstruction from a
single-view portrait using PanoHead’s generative latent
space. To achieve that, we first perform an optimization
to find the corresponding latent noise z for the target image
using pixel-wise L2 loss and image-level LPIPS loss [51]. To
further improve reconstruction quality, we perform pivotal
tuning inversion (PTI) [35] to alter the generator parameters
with a fixed optimized latent code z. From a single-view
target image, PanoHead not only reconstructs photo-realistic
image and high-fidelity geometry but also enables novel-
view synthesis in 360◦, including large pose and back head.

5. Discussion
Limitations and Future Work. While PanoHead exhibits
excellent images and shapes quality from 360◦, it still con-
tains minor artifacts, e.g. in the teeth area. Similar to the
original EG3D, flickering texture issue is also noticeable
in our model. Switching to StyleGAN3 [20] as the back-
bone would help preserve high-frequency details. In practice,
we also observe more noticeable flickering artifacts with a

Target Projected Random Camera Poses

Figure 9. Single-view reconstruction from different camera poses.
The first column shows the target images, second column projected
RGB images and reconstructed 3D shapes using GAN inversion,
last two columns rendered images from any given camera poses.

higher swapping probability of the conditional camera pose.
We set this value to 70% as opposed to 50% in EG3D since
we empirically find it enhances 360◦ rendering quality but at
the minor cost of flickering texture artifacts. Another obser-
vation is that it lacks finer high-frequency geometric details,
e.g. hair tips. We leave it as future work to quantitatively
evaluate our geometric quality such as using depth maps.
Finally, although PanoHead is able to generate diverse im-
ages in terms of gender, races, and appearances, reliance on
training with only several datasets combination still makes
it suffer from data bias, to some extent. In spite of our data
collection effort, large-scale full-head annotated training im-
age dataset is one of the most critical directions to facilitate
full-head synthesis research. We anticipate such datasets can
resolve some of the limitations aforementioned.
Ethical considerations. PanoHead is not specifically de-
signed for any malicious uses, yet we do realize that the
single-view portrait reconstruction could be manipulated,
which might pose a social threat. We do not encourage the
method being used for violating others’ rights in any forms.

6. Conclusion

We propose PanoHead, the first 3D GAN framework
that synthesizes view-consistent full head images with only
single-view images. With our novel design in foreground-
ware tri-discrimination, 3D tri-grid scene representation, and
self-adaptive image alignment, PanoHead enables authen-
tic multiview-consistent full-head image synthesis in 360◦

and demonstrates compelling qualitative and quantitative re-
sults compared with state-of-the-art 3D GANs. Furthermore,
we present 360-degree photo-realistic reconstruction with
highly detailed geometry from single-view real portraits. We
believe the proposed method presents an interesting direc-
tion for 3D portraits creation, which sheds light on many
potential downstream tasks.
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